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SUMMARY

The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a
joint National Aeronautics and Space Administration and Air Force flight-test program.
The HiMAT vehicle is a remotely piloted research vehicle. 1Its design incorporates
the use of advanced composite materials in the wings, and canards for aeroelastic
tailoring. A flight-flutter test program was conducted to clear a sufficient flight
envelope to allow for performance, stability and control, and loads testing. Testing
was accomplished with and without flight control-surface dampers. Flutter clearance
of the vehicle indicated satisfactory damping and damping trends for the structural
modes of the HiMAT vehicle. The data presented in this report include frequency and
damping plotted as a function of Mach number.

SYMBOLS
ASE aeroservoelastic Mg limit Mach number
BCS backup control system PCS primary control system
c control surface chord length v true velocity
g acceleration due to gravity a angle of attack, deg
g structural damping coefficient w frequency, rad/sec
M Mach number

INTRODUCTION

The highly maneuverable aircraft technology (HiMAT) vehicle was built by Rockwell
International for use in a joint National Aeronautics and Space Administration (NASA)
and Air Force flight-test program. The vehicle was remotely piloted from a ground-
based cockpit (ref. 1) and designed to demonstrate several advanced fighter tech-
nologies, including: (1) close-coupled canards that provide aerodynamic benefits,

(2) active controls using a digital fly-by-wire system, (3) advanced composite and
metallic structures, and (4) wing and canard aeroelastic tailoring.

The vehicle was launched from a B-52 aircraft at 13,716 m (45,000 ft) for each
flight., The vehicle weight at launch (full fuel) was 1587 kg (3500 1b). The overall
vehicle dimensions are presented in figure 1. The cruise or maneuver camber of the
wing and canard supercritical airfoils could be selected between flights by changing
leading edges. The difference in the leading edges is illustrated in figure 2.

A flutter-clearance program was conducted to verify the freedom from flutter
within the flight envelope for the HiMAT vehicle. Clearance of the flutter envelope
consisted of: flutter analysis (refs. 2 to 4), ground-vibration test (GVT) (ref. 5),
wind-tunnel test (ref. 5), and flight-flutter test.

Rockwell International, North American Aircraft Operations, performed the flutter-
analysis and wind-tunnel tests. The wind-tunnel testing was performed only for the



investigaton of shock-induced oscillations. The GVT which was supported by NASA and
Rockwell International, was conducted by the Air Force Flight Test Center, Edwards
AFB, California. Flight-flutter testing was conducted by the NASA Ames Dryden Flight
Research Facility (DFRF) at Edwards, and supported by Rockwell International.

Test Objectives

The objectives of the program were to: (1) provide a flutter clearance for the
HiMAT vehicle which would allow performance, stability and control, and loads testing
to be accomplished, and (2) obtain frequency and damping information for critical
structural modes of vibration.,

Vehicle Description

Two HiMAT vehicles were constructed. The first vehicle (Ship 1, serial no. 870)
served as the basis for envelope expansion which included supersonic flight. The
second vehicle (Ship 2, serial no. 871) was used to probe the transonic region with
emphasis on pressure and structural deflection measurements. Ship 2 was not origi-
nally intended to be flown supersonically during the flight-test program.

After the subsonic flutter clearance, Ship 1 was equipped with elevator and ele-
von control-surface dampers to prevent single-degree-of-freedom control surface
flutter at supersonic speeds. These dampers were removed toward the end of the
flight~test program. Ship 2 was not equipped with control-surface dampers since the
vehicle was not intended to be flown at supersonic speeds., All flutter testing was
conducted on Ship 1 (fig. 3).

Two independent digital flight-control systems have been implemented in the HiMAT
vehicles., Each vehicle was flown in the primary control system (PCS) for normal
research flight-test conditions. A backup control system (BCS) was provided to con-
trol the vehicle in the event of certain airborne or ground failures which would pre-
clude the use of the PCS (ref. 7). Transfer from the PCS to the BCS was designed to
be automatic, but manual transfer could also be initiated.

The ailerons were mechanically locked out after the eighth flight, primarily as
part of the new, relaxed, static stability-control system testing within the flight
envelope., It should be noted that the ailerons were predicted to flutter at super-
sonic speeds, and may have required dampers had they not been locked out. The rud-
ders, elevons, elevators, and canard flaps were active for all flutter flights
(fig. 1). The rudders were all movable surfaces, while all the other control sur-
faces were hinged.

Instrumentation

Flutter instrumentation aboard Ship 1 consisted of the accelerometers and strain
gages shown in figure 4. This instrumentation was used for all of the supersonic and
some of the subsonic flutter testing. Instrumentation for the initial subsonic test-
ing did not consist of the right-hand elevon and elevator accelerometers. However,
an accelerometer was mounted on the forward and aft tip areas of the left canard and
wing for the initial subsonic testing.



TEST APPROACHES AND PROCEDURES

Flight-Envelope Expansion

Flutter testing was accomplished at altitudes of 12,192 m (40,000 ft) and 7,620 m
(25,000 ft). The maximum Mach numbers flown for data acquisiton were Mach 1.44 at
12,192 m (40,000 ft) and Mach 1.29 at 7,620 m (25,000 ft). Each flutter flight con-
sisted of a constant-altitude, incremental Mach number flight-envelope expansion,

The planned incremental test points are illustrated in figure 5. Angle-of-attack
effects on damping were evaluated at selected transonic test conditions. The sub-
sonic envelope was cleared, and then the supersonic envelope was cleared. Accom-
plishment of the 12,192-m (40,000-ft) test points always preceded accomplishment of
the 7,620-m (25,000-ft) test points.

Excitation

The vehicle was excited at each test point by a sequence of control-surface
pulses which were programmed into the ground-based computer. These pulses provided
symmetric and antisymmetric excitation using the ailerons, canard flaps, elevons, and
rudders. The aileron pulses were deleted from the sequence for the flights when the
ailerons were mechanically locked on the vehicle. The execution time for the sequence
of control-surface pulses was approximately 20 sec. The amplitude and duration of
each control-surface pulse is illustrated in figure 6.

Random atmospheric turbulence was the primary source of excitation to the

vehicle's structure. Typically, 1 min of data was collected at each subsonic test
point, and 30 sec of data was acquired at each supersonic test point.

Envelope Expansion Procedure

A consistent procedure was used during the testing of the HiMAT vehicle, The
pilot first stabilized the vehicle at the test altitude and specified Mach number.
When the vehicle was stabilized, the structure was excited by control-surface pulses
and random atmospheric turbulence.

Telemetered data were displayed on strip charts and were digitally stored on a
disk in the DFRF spectral-analysis facility. Selected accelerometer responses were
monitored on a real-time spectrascope to provide frequency-domain information. A
Fourier analyzer was used for auto-power spectrum calculations to obtain frequency and
damping information from the random data. The data were smoothed by multiplying the
autocorrelation function by an exponential function. The half-power technique was
used to estimate damping. The logarithmic decrement technique was employed to obtain
frequency and damping information from the strip chart responses to control-surface
pulses. Clearance to the next higher Mach number test point was given by the test
director in the spectral-analysis facility after the damping coefficients and trends
for the structural modes were observed to be satisfactory.

postflight analysis performed between flights consisted of calculating the auto-
power spectrum for each accelerometer response to extract the structural frequency
and damping values,



TEST RESULTS

The aircraft-measured response to excitation was used to calculate frequency and
damping values for each test point. As expected, the preprogrammed control-surface
pulses could only excite the first symmetric bending modes for the canard and the
wing. Random atmospheric turbulence was relied upon for excitation of the other
higher-frequency structural modes. However, there was often insufficient atmospheric
turbulence for good structural excitation because of the HiMAT high-altitude-only
flight-test envelope. Therefore, it was difficult to consistently excite all struc-
tural modes of interest with an adequate signal-to-noise ratio. Analysis of modal
data with a low signal-to-noise ratio results in scatter of the estimated damping
values. However, random and control-surface pulse excitation were considered accept-
able for this test program because (1) the flutter speed was predicted to be more
than 20 percent greater than the planned maximum speed test point, (2) speed was
increased by a small increment between test points, and (3) the HiMAT is a remotely
piloted vehicle.

Subsonic data were acquired with both the cruise and maneuver leading edges
installed on the vehicle. All supersonic test points were accomplished with the
cruise leading edges only. The subsonic data results revealed no significant effects
on the flutter characteristics of the vehicle because of the leading-edge configura-
tion change.

The data also indicated that the installation of mechanical locks on the ailer-
ons did not significantly affect the critical modal characteristics of the vehicle.

The effect of angle of attack on the modal damping was investigated. Turns at
an elevated load factor and pushover-pullup maneuvers were performed in the tran-
sonic region to acquire the data. BAnalysis revealed that no definite trends could
be established because of scatter in the data.

The plots of frequency and damping as a function of Mach number contain averaged
data. These data were obtained for each mode by averaging the frequency and damping
values calculated from several accelerometer responses, All frequency and damping
data presented are from auto-power spectra analyses; these data are not presented for
particular modes at some Mach numbers at which poor modal excitation was experienced.
Atmospheric turbulence sometimes failed to adequately excite a mode with a low energy
content, resulting in a low reliability of the calculated damping value because the
random excitation was of almost the same magnitude as was the magnitude of the noise.
The plots displayed were faired with least-squared error lines so that general data
trends could be followed. The structural modes were identified with names based on
data in reference 5.

Test Data at 12,192 m (40,000 ft)

The frequency and damping trends at 12,192 m (40,000 ft) are presented in fig-
ures 7 to 12, No adverse damping trends were exhibited for the modes that were
tracked. The maximum Mach number at which data were obtained was Mach 1.44.

The damping trend for the symmetric canard bending mode (fig. 9) exhibited a
decrease in damping in the transonic region; however, the level of damping increased
in the supersonic region.



Test Data at 7,620 m (25,000 ft)

The frequency and damping trends at 7,620 m (25,000 ft) are presented in figures
13 to 18. The damping trends and levels were satisfactory from a flutter standpoint.
The maximum Mach number at which data were obtained was Mach 1.29.

The flight-test envelope presently cleared for the HiMAT vehicle is illustrated
in figure 19, The envelope limits were established by the maximum Mach number (1.44)
and the maximum equivalent airspeed (518 KEAS) at which data were acquired. This
envelope is less than the HiMAT maximum design capability. More flight-flutter test-
ing would be required if further envelope expansion were desired.

Control Surface Free Play

The first three flights of the vehicle were flown with excessive free play in the
control surfaces. Flutter testing on the second and third flights revealed lightly
damped oscillations on the canard and wing.

Extrapolation of the damping trend for the canard indicated possible flutter at
Mach 0.95 at 12,192 m (40,000 ft). Frequency and damping trends of the wing and can-
ard were obtained after flights 2 and 3 by autocorrelation/direct Fourier transform
analyses performed by Rockwell International (ref. 8). Subsequent to flight 3, a
flutter analysis (ref. 8) with free play included was accomplished. The results of
the analysis are presented in figure 20. The boundary correlates closely with the
flight-test damping trends from flights 2 and 3.

The free play of all the control surfaces was significantly reduced by modifying
the control-surface actuator bolts. Limits were specified (ref. 9) for each control
surface (table 1), and the free play was measured after each flight to ensure that
these limits were not exceeded. Flutter testing was conducted on flight 4, and a
significant improvement in damping was noted. Figure 21 shows a comparison of damp-
ing trends and levels with and without free play. The damping estimates shown in
figure 21 were obtained from control-surface pulses using the logarithmic decrement
method (ref. 8). Note that the damping estimates exhibited in figures 13 (symmetric
wing bending) and 15 (symmetric canard bending) are slightly different than the
values shown in figure 21. The differences are likely due to the different tech-
niques (logarithmic decrement and auto-power spectrum) of analysis.

Aeroservoelasticity

puring flight testing, the HiMAT vehicle was monitored for possible aeroservo-
elastic (ASE) instabilities. Such instabilities occur when the flight-control system
dynamically interacts with structural modes. Adverse structural coupling of the
flight-control system was observed with the first symmetric wing-bending mode (9 Hz)
on two occasions. This coupling occurred in the pitch axis when BCS was engaged at
Mach 0.88 at 11,278 m (37,000 ft), and at Mach 0.91 at 12,802 m (42,000 ft). No
adverse coupling was noted while the vehicle was operated in the primary flight-
control system.

Time history traces of the BCS coupling with the 9-Hz structural mode at
Mach 0.88 at 11,278 m (37,000 ft) are presented in figure 22. Note that the wing
oscillations are limited in amplitude. During the BCS engagement at Mach 0.91 at



12,802 m (42,000 ft), the vehicle was decelerated from Mach 0.91 to Mach 0.80.
The 9-Hz oscillations remained constant in amplitude throughout the deceleration.

Several other transfers to the BCS occurred at altitudes below 11,278 m
(37,000 ft). No structural coupling was observed in the BCS. The maximum dynamic
pressure at which the BCS was engaged was 3.83 N/cm?2 (800 psf) at Mach 1.2 and

7,620 m (25,000 ft).

Control-Surface Dampers

Control-surface-rotation frequency measurements indicated that the control sur-
faces on the HiMAT vehicle had insufficient restraint stiffness to meet Rockwell's
single-degree-of-freedom flutter (buzz) criterion and could therefore be susceptible
to buzz instabilities. This buzz criterion was established from a Rockwell study and
is summarized in figure 23. The criterion does not include the effects of structural
damping, angle of attack, and airfoil shape. The study indicated that buzz would not
occur below a reduced velocity (v/cw) of 1.5, regardless of Mach number. The study
also indicated that the most critical Mach number was approximately 1.25. Note that
the unstable flight-test points are in the Mach number range of 1.0 to 1.1. It may
be inferred from this study that the higher the reduced velocity is above 1.5, the
more likely that the control surface is to buzz.

Using this criterion, frequency-versus-reduced-velocity curves were generated
for the control surfaces on both HiMAT vehicles (fig. 24). The rudders were all-
movable surfaces., Therefore, the buzz criterion does not apply to the rudders on the
HiMAT vehicle. When the measured control-surface-rotation frequency values for both
of the HiMAT vehicles were plotted on figure 24, the magnitude of the frequency defi-
cit was clearly indicated. As a result, detailed supersonic control-surface flutter
analyses were required to establish mechanical damper requirements. The analyses
assumed no structural damping in the determination of the control-surface viscous
dampers, primarily because of the unreliable nature of actuator system damping.

These analyses predicted that the existing hinge-line rotational stiffness was suf-
ficient to prevent canard flap, single-degree-of-freedom flutter, but that the ele-
vons and elevators would require dampers.

Elevon and elevator dampers were installed on Ship 1. The vehicle was flown to
Mach 1.44 at 12,192 m (40,000 £t) with no indications of control-surface buzz at any
Mach number.

It became desirable to fly Ship 2 supersonically so that wing and canard pressure
distribution and deflection measurement data could be gathered. Ship 2 was not
equipped with control-surface dampers. Because of money and time constraints, it was
decided not to modify Ship 2 with dampers, but to clear Ship 1 to fly supersonically
with the control-surface dampers removed, thus clearing Ship 2 so that it could fly
without control-surface dampers. Ship 1 was flown without dampers to Mach 1.2 at
12,192 m (40,000 £t) and to Mach 1.29 at 7,620 m (25,000 ft) with no indications of
buzz. Ship 2 was flown without dampers to Mach 1.2 at 12,192 m (40,000 ft), Mach 1.25
at 11,582 m (38,000 £t) and Mach 1.2 at 7,620 m (25,000 ft) with no indications of
buzz,

The buzz criterion and the results of the single-degree-of-freedom control-surface
flutter analyses proved to be conservative when compared with the flight results of
the HiMAT with the dampers removed. The lack of agreement between the buzz criterion
and the flight-test results may be a result of the inability of the criterion to
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account for the effects of structural damping, airfoil shape, and angle of attack.
The lack of correlation between the analyses and flight-test results may be due to
the inaccuracies of the analytical representation of the unsteady aerodynamics.
Another possible explanation is that the assumption of no structural damping in the
analysis was conservative. The rationale for this assumption is that as flight time
increases on a vehicle, the wear and tear on the control-system actuators can cause a
significant reduction in the inherent structural damping. However, for the HiMAT
vehicle, the reqular maintenance of the control system and the postflight free-play
checks would have prevented any significant reduction in. the actuator-system damping.

CONCLUSIONS

A flight-flutter test program was successfully completed for the HiMAT vehicle.
Data were acquired at Mach 1.44 and Mach 1.29 at 12,192 m (40,000 ft) and 7,620 m
(25,000 ft), respectively. The damping levels and trends were satisfactory from a
flutter standpoint. Three flights were flown with an excessive amount of free play
in the control surfaces. Lightly damped oscillations were recorded for the wing and
canard on the second and third flights. Extrapolation of the damping trends revealed
a possibility of flutter at Mach 0.95 at 12,192 m (40,000 ft). Subsequent to the
third flight, the free play was removed, and a significant improvement in damping was
exhibited on the fourth flight.

HiMAT Ship 1 was flown to supersonic speeds with and without dampers on the ele-
von and elevator control surfaces. Single-degree-of-freedom control-surface flutter
was not experienced for either configuration, although the buzz criterion and analy-
ses indicated that the damper-off configuration was susceptible to flutter.

A coupling of the flight-control system with first symmetric wing-bending mode
(9 Hz) was experienced at an altitude of 11,278 m (37,000 ft) and above while in the
BCS. The resulting oscillation was limited in amplitude. The BCS did not exhibit
this instability below 11,278 m (37,000 -ft).

Ames Research Center
Dryden Flight Research Facility
National Aeronautics and Space Administration
Edwards, California, March 9, 1983
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TABLE 1. - CONTROL SURFACE FREE-PLAY LIMITS

Control surface Free-play limit,
deg
Aileron 0.13
Elevon 0.286
Elevator 0.286
Rudder 0.034
Canard flap 0.13

XCanard fiap Aileron

\ Elevon

\ Elevator

\Cruise
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L i Figure 2. Cruise and man—

’ ———— 7187 (23.58)————  _Rudder euver camber leading edge
for wing and canard airfoil

section (interchangeable

between flights).

Figqure 1., HiMAT vehicle. Dimensions
in meters (feet).

ECN 14281

Figure 3. HIMAT test vehicle in flight.
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11. Left wingiet
12. Left rudder
13. Right rudder
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Figure 4. Vehicle instrumentation location.
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Figure 6. Automatic flight control pulse sequence. Right
control surface deflections were equal in magnitude to the
left surface deflections; the direction of the right surface
deflections corresponds to the symmetry noted for each pulse.
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Figure 22. Time history of wing oscillation. BCS
flight control mode; M = 0.88; altitude = 11,278 m
(37,000 ft).



Experiment
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Figure 23. Control-surface flutter criterion.

QO Ship 1
320 — O Ship 2
280 —
240 -
200
B Elevator
. Elevon and canard flap
ency,
fiﬂ:z CY, 160 [— Alleron
Canard flap
120 |—
Elevon
80 |—
40 -
I ] A | ! J
0 1 2 3 4 5 6
Vicw

Figure 24. HIMAT buzz requirements.
M = 1,25; altitude = 12,192 m
(40,000 ft).
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